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New topological indices in SO(3) Einstein-Yang-Mills 
theory 
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Department of Physics, Queen Mary College, Mile End Road, London E l  4NS, England 

Received 15 May 1980, in final form 18 August 1980 

Abstract. The topological classification of solutions to the Euclideanised SO(3) Einstein- 
Yang-Mills equations is discussed. As well as the usual Pontriagin index, two new 
two-valued indices, associated with the second Stiefel-Whitney class, are required to specify 
the bundles. The Charap-Duff solution is classified in this framework. 

1. Introduction 

Because of the current interest in Yang-Mills instantons, several authors (Charap and 
Duff 1977, Boutaleb Joutei and Chakrabarti 1979, Duff and Madore 1979, Pope and 
Yuille 1978) have examined the Yang-Mills system in a curved space-time back- 
ground, but have considered only SU(2) instantons or pseudoparticles. In this paper we 
change the gauge group to SO(3) and show that one obtains, as well as the usual 
Pontriagin index, new two-valued topological indices not present in flat space-time or 
in an SU(2) theory. 

In § 2 we describe the Euclideanised Einstein-Yang-Mills system, with a Schwarz- 
schild background geometry. The classification problem is equivalent to classifying 
principal G- bundles over S 2  x S 2 .  In § 3 we describe this classification when G = 
SO(3). In § 4 we classify a subset of the possible bundles in terms of maps from the 
space-time boundary to SO(3). In § 5 we calculate some potentials at spatial infinity 
and classify the Charap-Duff pseudoparticle solution. Finally § 6 contains some 
conclusions. 

2. Yang-Mills pseudoparticles in curved space-time 

We consider (anti-) self-dual solutions to the Euclideanised Einstein-Yang-Mills 
equations. The Yang-Mills field 

where hi are the generators of G, satisfies the (anti-)self-duality condition 
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where qFUap = J / ~ E , , , , ~ ,  and hence (because of the Bianchi identities) the Yang-Mills 
equations 

g,pvpF,u = 0, 

where V is the derivative w.r.t. both the gravitational and Yang-Mills connections. 
As the energy-momentum tensor T,,, vanishes for (anti-)self-dual configurations, 

the metric g,, can be any solution to the vacuum Einstein equations (Charap and Duff 
1977). We choose a Schwarzschild black hole background as we wish to examine the 
effects of a non-trivial space-time topology. The Schwarzschild line element is given in 
Kruskal coordinates (A, q, 6,4) by 

ds2 = g,, dx" dx" 

exp (- r/ 2 m ) 
(dA2+d772)+r2(d62+sin2 6 d4*), 

where 

A = exp(r/4m)(1/4m)(r - 2m)'" sin(.r/4m), 

77 = exp(r/4m)(1/4m)(r -2.m)'" cos(.r/4m). 

Here 7 is the 8~m-per iodic  time coordinate. Hence the topology of the space-time is 
R 2  X S 2  (Hawking 1977, Duff and Madore 1979). 

For convergence of the action integral, FWy must tend to zero as r + a .  This 
boundary condition can be replaced by the geometric constraint, that we seek instead 
solutions on the compactified space-time S 2  X S 2  which is obtained from R 2  x S 2  by 
shrinking the hypersurface r = a  to a point. In mathematical terms then, we are 
considering principal G bundles on a base space with topology S 2  X S 2 ,  whose curvature 
FFU satisfies the Yang-Mills equations. 

3. The topological classification of principal SO(3) bundles over Sz x Sz 

The group of isomorphism classes of principal G bundles on S",  denoted ElG@"), is 
isomorphic to the homotopy group nE- l (G)  of homotopy-equivalence classes of 
continuous mappings SE-' + G. This is because S" can be covered by two open disc-like 
regions, Of, and of, on each of which the bundle is necessarily trivial and the 
topological classification is given by a map from the overlap region D: n D: to G, which 
reduces to a map S E - ' +  G. Thus, for instance, SU(2) instantons on compactified flat 
space-time S4 are classified by n3(SU(2)) = Z. 

S0(3) ,  the group of three-dimensional rotations, can be topologised in the following 
manner. Map the rotation (6, a )  (about the axis 6 by an angle a S T )  to the vector a;. 
The resulting space is a 3-disc of radius T, with opposite points on the boundary 
identified as (6, T )  = (-6, T ) .  The topology of SO(3) is therefore RP3, real projective 
3-space, which can also be thought of as a 3-sphere S3 with antipodal points identified. 
The ~ G W  ( n  s 3) homotopy groups of SO(3) are n l ( s o ( 3 ) )  = 212, n2(s0(3) )  = 0 and 
n3 ( s0 (3 ) )  = Z. (The statement I11(S0(3)) = Z/Z implies that there are non-trivial loops 
on SO(3) which cannot be continuously deformed to a point. An example of such a loop 
is the z axis (-T < z < T )  linking the (identical) points r ( O , O ,  1) and ~ ( 0 ,  0, -l).) 

We now cover S 2  x S 2  with two overlapping regions on which we can analyse the 
bundle using the above information. Firstly we explain this covering in an easier 
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lower-dimensional case, namely the torus S' x S' which can be thought of as a rectangle 
with opposite edges identified. We cover the torus with two regions A and B as in figure 
1. A is an open 2-disc D 2  bounded by a circle S ' .  B is also bounded by S' and is a 
neighbourhood of a figure-of-eight denoted S' v S' (X v Y is the one-point union of X 
and Y )  or, more precisely, S1 v S1 is a deformation retract of B. In an analogous fashion 
we can cover S 2  x S 2  with two regions A and B, where A is a 4-disc D4 with boundary S 3  
and B is a neighbourhood of S2 v S2(S2 v S2 is a deformation retract of B) with boundary 
s3 also. 

Figure 1. 

By mapping A = D4 with its boundary S 3  into S4 by identifying S 3  to a point, we can 
pull back bundles over S4 which are characterised by n3(s0(3) )  = Z. Furthermore, as 
S 2  v S 2  is a deformation retract of B, the bundles on B are characterised by 

n i ( s o ( 3 ) )  @ni ( s0 (3 ) )  = z/z@z/z. 
Finally, the overlap region can be retracted to S 3  on which the bundle is necessarily 
trivicl as n2 ( so (3 ) )  = 0. Thus Bso(3)(S2 X S 2 )  is isomorphic to Z @ H / Z O Z / Z ,  and hence 
bundles are classified by three numbers: an integer which is the winding number or 
Pontriagin index, and two two-valued indices corresponding to the second Stiefel- 
Whitney class. 

This is in agreement with more general results obtained by Avis and Isham (1979), 
who state that for simply connected, four-dimensional manifolds the SO(3) bundles are 
classified by a pair of classes 

(p l ,  W ~ ) E H ~ ( M  z ) @ H ~ ( M ,  z,,), 
where p1 is the (first) Pontriagin class and w2 the second Stiefel-Whitney class. This pair 
must satisfy the general relation 

where U is the cup product. In our case there are no non-vanishing square elements of 
H2(M, Z12) and thc condition becomes p1 mod 2 = 0. In other words the Ponfriagin 
index must be an even number. This is not surprising, because the Pontriagin index 
comes from the winding number of SO(3) bundles over (D4, S3) pulled back from 
(S4, pt) and these are classified by maps S3 + S0(3) ,  which are necessarily of even 
degree as the map factorises into S 3  + SU(2) + S0(3),  and SU(2) + SO(3) (the pro- 
jection map) is of degree 2. 
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4. Classification of bundles trivial on the ( O , q 5 )  sphere 

We now examine our case from a slightly different point of view, paraphrasing an 
argument frequently used in the flat space-time instanton case. As we require the 
action integral to be finite, the field strength Fw,, must vanish at r = 00, and therefore A,, 
the Yang-Mills potential, must be a gauge transform of zero at r = CO: A,(r = 00) = 
gild,s;. Thus it would seem that solutions are characterised by maps from the boundary 
S x S , parametrised by (e, 4 ; 6 = 7/4m) to the group G. This is not the case, however: 
we are, in effect, covering S 2  x S 2  with two open regions S 2  x E,  and S 2  x E-, where E+ 
is the 2-disc r < CO and E- is a small two-dimensional neighbourhood of r = CO. The 
overlap region S 2  x E+ n S 2  x E- can be retracted to S 2  X S' .  However, bundles are 
characterised by maps from this overlap region to G only if the bundle is trivial on 
S 2  x E+ and S 2  x E-. If G = SO(3) this does not necessarily hold, as SO(3) bundles on 
S2 x E,  are classified by n l ( s o ( 3 ) )  = Z12 # 0. However, we can classify bundles which 
are trivial on the (e, 4 )  sphere by maps S2(8 ,  4 )  X S'([)+S0(3). We proceed to 
examine the homotopy type of such maps to obtain the classification and behaviour at 
infinity of bundles trivial on the (e, 4 )  sphere. By our previous analysis we would expect 
this homotopy group to be isomorphic to 

z 02 ,200  = ZOZ,2. 

There are two ways of constructing non-trivial maps from S 2  x S' to SO(3) = RP3.  
Firstly, recalling that n 1 ( R P 3 )  = Z12, we can trivialise the S 2  part and map S2 x S' + 
S ' +  RP3 along a representative loop of the non-trivial class of n, (RP3) .  Secondly, one 
can map S 2  X S' non-trivially onto S 3  and then project onto RP3.  The basic non-trivial 
map S2 x S' -+ S 3  involves mapping an open 3-disc-like region on S2 x S1 to S3\{N pole} 
and mapping the rest of S 2  x S' to the N pole. At the very least, one 1-cycle and one 
2-cycle must be mapped to the N pole (or to a set that can be contracted to a single 
point). One still has the option of performing an n-fold automorphism of S3 before 
dropping to RP3,  giving a map of degree 2n. 

Regarding the above two maps as generators of the homotopy group of maps 
S2 x S ' +  S0(3) ,  the resulting group is Z O Z I ~  as expected. Thus the maps are charac- 
terised by an even integer, the degree or Pontriagin index, and another two-valued 
number (0 or 1) corresponding to the 212 subgroup. Maps in any class can be obtained 
by group multiplication of the image points, i.e. 

g(2n, 0) = g(2, O)", 

&(2& 1) = g(2n, 0)g(0, 1). 

5. The potentials at infinity for bundles trivial on the (e, 4 )  sphere 

We now proceed to exhibit explicit maps and calculate the corresponding potentials at 
infinity. 

Let S 2  X S' be parametrised by (8; [), w h e r e 2  is a unit vector determined by (e, 4 )  
through the correspondence 

8 = (x, y ,  z )  = (sin e cos 4, sin e sin 4, cos e )  
and 5 = r/4m is a 2~-per iodic  variable parametrising S1. 
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A typical (0, 1) map is then given by 

d o ,  6) = exp(62’ A ) ,  

where A = ( A l ,  A 2 ,  A 3 )  are the generators of S0(3) ,  and 2’ is an arbitrary constant unit 
vector (in our example from 9 3 2‘ = (o,o,  1 ) ) .  

A typical ( 2 , O )  map is given by 

g ( 2 ,  0)(2; 6) = exp( l2 .  A )  exp(-62’. A ) ,  

where 2‘ is again an arbitrary fixed direction. This is so because: 
( a )  g ( 2 , O )  maps the two-cycle 6 = 0 and the one-cycle 2 = 2‘ to 1. 
( h )  g ( 2 , O )  is onto, and the pre-image of g’  E Im g ( 2 , 0 ) ,  g’  # 1 consists of precisely 

To show ( b )  requires a certain amount of calculation, and we refer the reader to the 

By multiplying these two maps, we get a ( 2 , l )  map: 

two-points; hence the degree of g ( 2 , O )  is 2 .  

Appendix. 

g ( 2 , l )  = g ( 2 ,  o ) g ( o ,  1 )  = exp( l2 .  A )  exp(-@. A )  exp(62’’. A ) .  

By choosing 2’ = 2’’ we have 

g ( 2 ,  1) = exp(6k. A) .  

These maps give rise to the following potentials at infinity ( A  = A ,  dX’): 

A(0.1) = (2’. A )  dl ,  

~ ( 2 . 0 )  = eXP(t2if ~ ) ~ ( 2 , 1 )  exp(--&‘. A )  - (2”. A )  d& 

A‘2”’ = [R d l  - (1 - cos 6)(2 x d g )  + sin 6 d k ]  . A. 

An anti-self-dual S U ( 2 )  pseudoparticle (Charap and Duff 1 9 7 7 )  is given in rectan- 
gular coordinates by 

m X’ U’ ij/( xi vi 
r r 21 r2  2i A = - T - y d T + ( l  -a)€ - -dX“, 

where cy = (1 - 2 m / r ) 1 / 2 .  Its Pontriagin index is found to be 1 .  
By replacing ai/2i  by A i  and performing the gauge transformation 

A: = g ( 2 , 1 ) - ’ A W g ( 2 ,  1) + g ( 2 , 1 ) - ’ d w g ( 2 ,  1) 

to ensure that A, = 0 at the horizon r = 2 m ,  we get for A’: 

[ ( 4y2) 2 d6 - (1 - c y  cos [)(2 x d 2 )  + c y  sin 6 d k  . A. I A ’ =  1 - -  

As the Pontriagin index is the degree of the map S 2  x SI+ G and it is 1 for 
G = S U ( 2 ) ,  it must be 2 for G = SO(3).  Indeed at r = CO, A’ takes the form of A”*”. 
Also, when we transform A’ to angular coordinates we find A$=O for 8 = 0 ,  T. 

Therefore A’ is regular and hence trivial on the (e, 4 )  sphere. In conclusion, the 
anti-self-dual SO(3) Charap-Duff solution is in the ( 2 ,  1 , O )  sector of Z O H / 2 0 E / 2 .  
Similar results hold for the self-dual case. 
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6. Conclusions 

We have shown that SO(3) pseudoparticles on Euclideanised Schwarzschild space-time 
have a more complicated topological structure than flat space-time SU(2) instantons 
which are characterised by a single integer. This is due to an interplay between the new 
choice of gauge group, S0(3), and the underlying space-time topology S 2  x S 2 .  (Both 
SO(3) flat space-time instantons and SU(2) pseudoparticles on Euclideanised Scwarz- 
schild space-time are classified by a single integer.) 

Although we have only discussed the Euclideanised Schwarzschild geometry, the 
topological analysis remains true for an SO(3) gauge theory on any base space whose 
compactified geometry is homeomorphic to S 2  x S 2 .  

The Charap-Duff potential only had to be specified on two regions, r < 00 and a 
neighbourhood of r = 03 (where A = 0). In general a potential need not be trivial on one 
of the S 2  spheres and would have to be specified on four overlapping regions: the above 
two subdivided into 8 > 0 and 8 < T. 
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Appendix 

We wish to show that g(2,O) is onto, and that, apart from the point g = 1, the pre-image 
of g E SO(3) consists of two points of S 2  x S' .  

It is convenient to factorise g(2,O) in the following way: 

SU(2) 

where 

g'(2,0) = exp(-@. a/2i)  exp(6k. a/2i)  

and h is the projection map from SU(2) to SO(3) given by 

h ( Q )  = h(-Q)  = [ai i ]  = [$Tr(QcqQtuj)]. 

It can be checked that 

h(exp(62. cr/2i)) = exp(t-2. A ) ,  

and using the identity 
3 

3 Tr(XY) = $ Tr(nX)  - 3  Tr(criY) 
i = l  
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for traceless matrices X ,  Y, we have 

h(QiQz) = h(QJh(Q1) .  
Hence the diagram commutes. 

g E ~ ~ ( 2 1  ( g  z 1) consists of one point of s2 x S’  (as h is 2 : 1).  

g’(2,0) = 1 (cos’ 46 + z sin’ it) - ial(x sin it cos it + y sin’ $8) 

Thus it remains to show that g’(2,O) is onto (as h is onto), and that the pre-image of 

g’(2,O) can be written 

1 - ia2( y sin 46 cos 3s - x sin’ $6) - ia3((z - 1)  sin it cos -jt), 
where we have chosen the arbitrary vector 2’ = (0, 0 , l ) .  

Setting the RHS equal to 

a 1 - ibal  - icaz - ida3 (a’+b’+c’+ d 2  = 1) 

and solving the equations, we find 

tan it = ( a  - l ) / d ,  

x = (bd - ac + c ) / ( a  - 1) 

y = (ab + cd - b ) / ( a  - 1)  

z = [a  - (a’ + d ’ ) ] / (a  - 1) ( a  # 1) .  

So for any choice of a, b, c, d (apart from a = 1) we have a unique choice (2; 6) such 
that 

g ’ ( 2 , 0 ) ( 2 ;  5 )  = a 1 - ibol - icaz - ida3. 

Hence the result follows. 
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